

TWENTY-SEVENTH INTERNATIONAL SYMPOSIUM - LIGHTING ENGINEERING 2019

The influence of pavement reflectance on energy efficiency of lighting

Mentor: prof. dr. Grega Bizjak

Author: Viktorija Cvetanoska vc0327@student.fe-uni.lj

Contents:

- Introduction
- Project and analyses
- Previous research
- Problem definition
- Problem explanation using DIALux 4.13
- Energy efficiency analyses
- Conclusion

Introduction

- Standard r-table, defined by the International Commission on Illumination (CIE)
- The amount of pavement reflectance can be described with parameters:
- Q_0 , average luminance coefficient \$1, mirror factor
- Types of pavement used in calculations:
- Concrete Asphalt

_	

R table

Class	Standard S1	S1 range	Q_0
R1	0.25	< 0.42	0.10
R2	0.58	0.42 < \$1 < 0.85	0.07
R3	1.11	0.85 < \$1 < 1.35	0.07
R4	1.55	> 1.35	0.08

Previous research

- Change of already existing standard?
- Pavements used in past vs pavements used nowadays
- The paving material should be light and diffuse
- Luminance coefficient Q_0 should be high
- Mirror (specular) factor S1

Problem definition

- Reflectance of different pavements
- Road surface luminance values and luminance uniformity change easily as pavement surface physical state changes
- Used: fifteen different luminaires
- luminance approximately 1 cd/m²; two-lane roadway of 7 m width;
- operation time of luminaires in Slovenia is approximately 4200 hours;

Conclusion

- The paving material should be light and diffuse!
- Road lighting energy savings.
- Consider using dynamic road lighting system (which has already been tested in Finland).